
1

Timemory:
Modular Performance
Analysis for HPC

Jonathan R. Madsen, Ph.D.
Application Performance Group

Aug 18, 2020

2

Key Takeaways

1. Not “use X or timemory” à “use X via timemory”
(“…and arbitrarily add support for Y”)

2. Front-end library: optional, arbitrary to implement

3. Back-end library: highly modular and easily extendable

4. Tools are provided but is, first and foremost, a toolkit

3

Objective: Common Instrumentation API
• Abstractions to record performance

data for a section of code or work-
flow are a staple in HPC apps

• Issue:
• Increase in multiple language apps
• Increase in multiple architectures apps

• Result:
• Comprehensive analysis requires using

multiple tools and/or multiple APIs
• Supporting new language/architectures

in abstractions tends to require
significant re-write

Boehme, D, Huck, K A, Madsen, J, and Weidendorfer, J. Thu . "The Case
for a Common Instrumentation Interface for HPC Codes". United States.
https://www.osti.gov/servlets/purl/1574633.

https://www.osti.gov/servlets/purl/1574633

4

Common Instrumentation Goals
• All common HPC languages

• Instrumentation and sampling

• Data-sharing between tools

• Local customization

• Optimal efficiency and optimal
flexibility implementations

• Agnostic to input application

• Agnostic to output by tools

• Minimal overhead

• Extensible by application

o Wrap existing abstractions

• Easy to support
o Stable interface

o In-house modifications do not
require upstream propagation

5

Common Instrumentation Requirement

• Common convention for calling tools
1. Function pointers? Callbacks?

• Restricts invocation to specific function signature(s)
• Collecting phase data can be unwieldy

2. Dynamic Polymorphism?
• Restricts invocation to specific function signatures(s)
• Simplifies phase data collection à member data
• Always requires heap allocation

6

Common Instrumentation Problem

• Need methodology which abstracts types out of pattern(s)
for calling tools while preserving types
o Start/Stop + different input types:

• Host timer requires no input
• Stream-specific CUDA event timer requires cudaStream_t input

o Get + different return types:
• Trip-counter à returns integer
• Hardware counter à returns array of doubles
• Roofline à returns elapsed time paired with hardware counters

7

Common Instrumentation Solution

• Each tool wraps its behavior/requirements into struct(s)
o Static configuration data, local intermediate (phase) data, etc.

• Calling convention is member function names
o Functions are overloaded for supported input types
o Functions return any type

• Variadic template classes
o Bind tools together into tool-like struct
o Variadic member functions accept any input + deduce return type
o Manage metadata, other behavior (e.g. data-sharing)

8

Overview

component C++ structs which encapsulate a measurement instance

operation<T> C++ structs which encapsulate how to perform the measurement in
different scenarios (different arguments, cached data available, etc.)

bundle<T…> C++ struct which binds together components and maps components
onto operations + broadcasts arguments to operations

trait<T, …> C++ structs which encode properties at compile-time

storage<T> C++ struct which manages accumulation of
persistent data and call-stack hierarchy

settings C++ struct which maps configuration to code accessors,
environment variables, command-line arguments, etc.

9

Components

• Components provide “tools”
o Member functions + overloads + type-traits à define capabilities
o Reusable within other components (ideally)
o Could implement other components
o Could provide aforementioned:

• Callback system
• Dynamic polymorphism

o May be defined by external tool

Components

10

Operations

• Operations provide “tool adapter”
o Handle member function invocation for given set of arguments

• Using SFINAE and/or tag dispatch
o Local customization via template specialization
o Usually require component instance
o May provide function call operator
o Handle runtime disabling

Operations

11

Bundles

• Bundles are the “instrumentation library”
o Zero or more components are template parameters
o Filter out components marked as “unavailable”

• Important for creating a portable handle to tools

• Bundles come in various flavors
o Implicit start/stop via RAII
o Implicit/explicit interaction with storage
o Different component allocation schemes

• Heap, stack, mixed Bundles

12

Putting It All Together

Component
Interface

bundle<T…> bundle<Foo, Bar, Yaz> obj;
obj.start(10);

operation<T>
operation::start<Foo>(Foo& f, int v);
operation::start<Bar>(Bar& b, int v);
operation::start<Yaz>(Yaz& y, int v);

f.start();
b.start(10);

SFINAE

struct Foo
{

void start();
};

struct Bar
{

void start();
void start(int);

};

Variadic template unrolling

struct Yaz
{

void sample();
};

13

Summary

• Flexible interface for creating handling multiple tools

without abstraction

• Ideal for built-in performance analysis into your code
o Automatically support multiple tools

o Fully customize interface

o Developers and users can create custom components

14

Acknowledgement

Authors from Lawrence Berkeley National Laboratory were supported
by the U.S. Department of Energy’s Advanced Scientific Computing
Research Program under contract DE-AC02-05CH11231.
This research used resources of the National Energy Research
Scientific Computing Center, which is supported by the Office of
Science of the U.S. Department of Energy under contract DE-AC02-
05CH11231.

15

Additional Information

• Back-up slides contain more information on:
o Data storage model, type-traits, settings
o Instrumentation in (more) detail
o Wrapping common instrumentation around external functions
o Python bindings
o Summary of existing pre-built tools
o Various other utilities
o Future Work
o Relevant Links
o Contact Information

Backup Slides

17

Common Performance Analysis Paradigms

• Start / stop collecting metric around region
• Sample metrics at regular intervals
• Record event data within application
• Dynamic instrumentation
• Compiler instrumentation
• Accumulate or separate data per-process, per-thread
• Call-graph hierarchy

18

Performance Analysis APIs

1. Tools provide APIs
o VTune → ittnotify
o NVIDIA → NVTX
o Caliper, CrayPAT, gperftools, LIKWID, Score-P, TAU, etc.

2. Libraries provide tool APIs
o MPI à PMPI, MPI-T, OpenMP à OMPT, Kokkos à KokkosP

3. Libraries provide built-in implementations of tool APIs
o AMReX has amrex::TinyProfiler (basic timing), CrayPAT, ARM-Forge,

NVTX, VTune, etc.

Common instrumentation simplifies #3 by generalizing #1 and providing
implementations for #2

19

Proposal

• Use C++ templates to provide skeleton framework
o Performance analysis tools use common set of patterns

• Use C++ template metaprogramming to:
o Unify dissimilar interfaces
o Accommodate different data storage requirements
o Minimize abstractions and/or opaque data types (i.e. void*)
o Eliminate any runtime logic available at compile-time

• Use C++ variadic templates to:
o Support creating a single type which controls multiple tools
o Provide functions which can receive any inputs

Timemory
● Storage
● Traits and Settings
● Example

21

Storage
• Singleton per component which

handles tracking the persistent data
o Unique to each thread and/or

process
o No synchronization locks or

communication overhead outside of
construction and destruction

o Secondary instances get merged into
primary during finalization

• Supports intermixed layouts: tree, flat,
timeline, tree-timeline, flat-timeline

• Writes to various output formats
o JSON, XML, text, binary, flamegraph
o More can be supported

Call-graph per component. Each node is keyed to a label (e.g.,
function name, file, and line number) and contains an instance of
the component. The component instance within the call-graph
provides data-storage only.

22

Traits and Settings

• Traits customize behavior, optimize performance,
add/remove features
o {start,stop}_priority, uses_{timing,memory}_units, statistics,

derivation_types, cache, python_args, uses_storage, etc.
• Settings handle mapping runtime configuration variables

to environment variables, command-line arguments
o tim::settings::enabled() [C++]
o timemory.settings.enabled [Python]
o TIMEMORY_ENABLED [environment variable]
o --timemory-enabled=off [command-line argument]

23

Example

● Four components: Foo, Bar, Yaz, Egg
● Foo always implements flat storage
● Bar has start/stop priority
● Yaz is unavailable
● Egg does not use storage

24

● Yaz is implicitly removed from bundle_t
● Foo, Bar, and Egg created on stack
● Only Foo and Bar insert into storage
● Foo is started w/o args
● Bar is started with stream arg
● Egg does not provide compatible start
● Bar has priority → stops first
● Foo, Egg stop according to template order
● Foo, Bar add themselves to storage node
● obj.get() translates to tuple of types w/ non-

void get() member function

Usage Implementation

via operation::start<T>

via operation::stop<T>

What else does timemory provide?

26

Instrumenting External Functions

• Simple function wrapping and replacement via GOTCHA
o Wrap N functions in ~N+3 lines of code

• Templates will automatically extract return-type and arguments
• Macro for unmangled (extern “C”) functions
• Macros for mangled (extern “C++”) free-, member-functions

o Supports auditing arguments and return value
o Reference counting → scoped function wrapping/replacement

27

Tools

• Numerous pre-built command-line tools are provided
o timem → combines UNIX time + rusage + HW counter
o timemory-run → dynamic instrumentation via Dyninst
o timemory-avail → provides component info, available settings, available

HW counters
• Numerous pre-built instrumentation libraries are provided

o timemory-mpip → wraps MPI calls with runtime selection of components
and tracks comm data sizes

o timemory-ncclp → wraps NCCL calls with runtime selection of components
and tracks comm data sizes

o timemory-ompt → implement OMPT with runtime selection of components
o kokkosp_timemory* → generic and dedicated implementations of the

KokkosP interface

28

Python

• Extensive Python bindings are provided
o Settings
o Decorators, context-managers
o Python profiling (per-function), tracing (per-line)
o Control over instrumentation libraries
o Python classes for bundles
o Generic plotting, roofline plotting

• Every enumerated component gets standalone Python class, e.g.
o timemory.component.PapiVector
o timemory.component.CuptiActivity
o timemory.component.CaliperMarker

• Common workflows for CI

29

Utilities
• CMake INTERFACE libraries for various flags, libs
• Empirical roofline toolkit (ERT)
• Argument parser similar to Python argparse
• Embedding Python interpreter
• Subprocess piping utilities
• Conditional instrumentation
• String concatenation
• Signal handling and sampling
• Generic source location class
• Platform-agnostic environment get/set templates
• STL container overloads for arithmetic and statistics

Summary

31

Summary (1/3)

• Toolkit for building performance analysis tools
o Use timemory-provided tools and libraries to perform analysis

with timemory-provided components
o Use timemory API to implement custom high-level performance

monitoring system
o Use timemory API to supplement timemory-provided tools with

custom components
o Build custom tool or library with timemory as backend
o Build custom Python tool with timemory standalone components

• Components
o Optimal invocation of one measurement / usage

32

Summary (2/3)

• Operations provide:
o Ability to specialize behavior for a given set of arguments
o Use SFINAE to handle support for operation and/or arguments

• Bundles broadcast arguments to operations and provide
common interface to components with different
features/capabilities

• Storage is optional feature and simplifies aggregation over
multiple processes and multiple threads

• Type-traits encode properties and features at compile-time
• Settings provide mapping between environment variables,

code accessors, and command-line arguments

33

Summary (3/3)

• Powerful, easy-to-use GOTCHA extensions
• Numerous command-line tools and instrumentation

libraries are provided
• Python interface provides:

o Timemory runtime
o Toolkit of components for building Python tools
o Visualization utilities

• Miscellaneous utilities for common performance analysis
tool requirements

● Future Work
● Relevant Links
● Contact Info

35

Future Work

• Planned
o Compiler Instrumentation
o Score-P, CUPTI Profiler API, OpenCL, ROCprofiler, ROCtracer
o Additional serialization formats (e.g. YAML, CUBE, etc.)
o Jupyter notebooks
o NERSC Iris + SLURM Integration
o Components which perform analysis of other components

• Produce recommendations/hints w.r.t. bottlenecks
• Potential

o LLVM X-ray Support
o Generic LLVM pragma implementation

36

Relevant Links
• Journal Article

o Madsen, J.R. et al. (2020) Timemory: Modular Performance Analysis for HPC. In: Sadayappan P., Chamberlain B.,
Juckeland G., Ltaief H. (eds) High Performance Computing. ISC High Performance 2020. Lecture Notes in Computer
Science, vol 12151. Springer, Cham

• Source code
o github.com/NERSC/timemory

• Documentation
o timemory.readthedocs.io

• Tutorials
o github.com/NERSC/timemory-tutorials

• Package Managers
o Available via Spack, PyPi
o github.com/NERSC/timemory/wiki/Installation-Examples

https://www.researchgate.net/publication/342185726_Timemory_Modular_Performance_Analysis_for_HPC
https://github.com/NERSC/timemory
https://timemory.readthedocs.io/en/develop
https://github.com/NERSC/timemory-tutorials
https://github.com/NERSC/timemory/wiki/Installation-Examples

37

Contact Info

• If you are interested in:
o Integrating timemory into your performance analysis workflow
o Contributing a component for your tool
o Hands-on tutorial
o Feature request

please send an email to jrmadsen@lbl.gov or create an
issue on GitHub

mailto:jrmadsen@lbl.gov
https://github.com/NERSC/timemory/issues

